Optimization 의 큰 틀부터 보자 딥러닝의 학습에서는 최대한 틀리지 않는 방향으로 학습해 나가야 한다. 여기서 얼마나 틀리는지(loss)를 알게 하는 함수가 loss function=손실함수이다. loss function의 최소값을 찾는 것을 학습의 목표로 한다. 여기서 최소값을 찾아가는 것을 최적화=Optimization 이라고 하고 이를 수행하는 알고리즘이 최적화 알고리즘=Optimizer 이다. GD를 기본으로 하여 loss function이 최소가 되는 지점, 즉 최적의 가중치를 찾는 방법 옵티마이저는 학습 데이터(Train data)셋을 이용하여 모델을 학습 할 때 데이터의 실제 결과와 모델이 예측한 결과를 기반으로 잘 줄일 수 있게 만들어주는 역할을 한다. optimizer를 쓰는 곳..